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In the pursuit of new molecule-based magnets,1 the diruthenium
tetraacetate cation, [RuII/III

2(O2CMe)4]+ (1), is an intriguing building
block. 1 has a high-spinS) 3/2 ground state due to the accidental

degeneracy of theπ* and δ* HOMOs,2 an unusually large zero-
field splitting, D ) +53 ( 24 cm-1,2b,3 and the ability to add one
or two ligands axial to the Ru-Ru bond. Several extended structures
based on1 have been reported.4-6 However, even when the structure
is bridged with organic radicals such as nitroxides, albeit antifer-
romagnetically coupled, magnetic ordering does not occur.6a We
report herein [RuII/III 2(O2CMe)4]3[MIII (CN)6] [M ) Cr (2), Fe (3),
Co (4)] and their magnetic properties, including magnetic ordering
at 33 K for2, a rare example of a magnet containing a second-row
transition metal.

Compounds2-4 form upon addition of an aqueous solution of
K3[MIII (CN)6] to a freshly prepared aqueous solution containing a
stoichiometric amount of [RuII/III 2(O2CMe)4]Cl in an inert atmo-
sphere.7 The νCN IR spectrum shows single sharp absorptions at
2138, 2116, and 2125 cm-1 for 2-4, respectively, consistent with
maintaining octahedral symmetry about the MIII site. In addition,
all three compounds show characteristic asymmetric and symmetric
ν(OCO) bands at 1444 and 1403 cm-1 and aδ(CO2) band at 691
cm-1 for 1.8 On the basis of the stoichiometry and ability of1 to
axially coordinate to the N of cyanide,2-4 are proposed to form
a 3-D network structure withsMsCtNsRudRusNtCsMs
linkages along all three Cartesian axes, as illustrated in Figure 1.
A related motif is observed for the Prussian blue family of magnetic
materials.9

The powder diffraction patterns of2-4 can be indexed10 to
isomorphous body-centered cubic structures witha ) 13.34, 13.30,
and 13.10 Å, respectively. On the basis of the structures of
[M(CN)6]3- 11 and1,3 the M‚‚‚M linkage separationa ≈ 13 Å and
aCo < aFe < aCr are expected, as observed. Hence, the diffraction
data are consistent with the structure in Figure 1. The body-centered
space group indicates a second independent lattice interpenetrating
the first lattice, as observed, for example for Mn[C(CN)3]2.12

The magnetic susceptibilities,ø, of 2-4 were studied using a
SQUID magnetometer between 2 and 300 K. The effective
moments,µeff [)(8øT)1/2] at 300 K for 2-4 are 7.72, 7.30, and
7.26µB, respectively. These values are in good agreement for the
summation of independent spins based on the Curie-Weiss
equation, eq 1, i.e., 7.75, 6.93, and 6.71µB. Modeling of µeff(T)
(Figure 2) is more complex, as although the M site can be modeled

with eq 1, the ruthenium(II/III) dimer is known to have a large
zero-field splitting (D) and a temperature-independent paramagnetic
(TIP) component, and its contribution toø(T) can be described by
eq 2;2b,6,13eq 3 can be used to model the expectedø(T) for 2-4.
The Weiss constant,θ, is introduced to roughly simulate the
magnetic interactions between the paramagnetic species.

As CoIII is diamagnetic, forT > 2 K, µeff(T) for 4 can be fit by
eq 2, withD ) 69.4 cm-1, TIPRu2 ) 800× 10-6 emu/mol,θ ) 0
K, gRu2 ) 2.04, and the chi-squared agreement factor14 is ∑(µexp -
µcalc)2/µexp ) 2.823 × 10-3 (Figure 2). This is in accord with
magnetic behavior observed for several other complexes containing
1.6

In contrast to the case for4, eq 3 fitsµeff(T) only above 120 and
8 K for 2 and3, respectively (Figure 2). For2, the data can be fit
with D ) 69.4 cm-1, θ ) -40 K, gRu2 ) 2, gFe ) 2, and TIPRu2 )
700 × 10-6 emu/mol (chi-squared) 5.511× 10-3). The fitting
parameters indicate significant antiferromagnetic coupling between
adjacent spin sites. Upon decreasingT for 2, µeff(T) increases below
∼50 K, reaching a maximum value of 30.9µB at 32 K prior to
abruptly decreasing to 3.65µB at 2 K (Figure 2).
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Figure 1. Proposed 3-D body-centered, interpenetrating network structure
for [Ru2(O2CMe)4]3[MIII (CN)6] (M ) Cr, Fe, Co); the bridging acetates,
rotated 45° with respect to [MIII (CN)6]3-, are not shown for clarity.
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This behavior is indicative of magnetic ordering. To confirm
that2 magnetically orders, the in-phase (ø′) and out-of-phase (ø′′)
alternating current susceptibilities were taken and show frequency-
independent peaks for bothø′(T) at 32 K andø′′(T) at 34 K,
confirming that1 orders withTc ) 33 ( 1 K (Figure 3a). The
field dependence of the magnetization,M(H), approaches saturation
at 2 kOe and saturates to a value of 17 870 emu‚Oe/mol at 2 K
(Figure 3b). Assumingg ) 2, a saturation magnetization,Ms, of
67 000 emu‚Oe/mol is expected for ferromagnetic coupling, while
a value of 33 500 emu‚Oe/mol is expected for antiferromagnetic
coupling. Antiferromagnetic coupling as observed for the 1-D chain
of 1(NITPh) (NITPh ) phenyl nitronyl nitroxide),6a leading to
ordering as a ferrimagnet, is expected for2. The observed value is
one-half the expectation for the latter, and this low value may be
due to the largeD of the ruthenium dimer, since forT , D, only
theS) 1/2 state is significantly populated at 2 K. An applied field

leads to a small increase inM, which for a metamagnet increases
above∼800 Oe prior to saturation. Hysteresis with a very unusual
constricted shape is observed at 2 K (Figure 3b). The remanent
magnetization at 2 K is 3700 emu‚Oe/mol. Constricted hysteretic
behavior and reducedMs have been attributed to metamagnetism
caused by canted spins,11b and this phenomenon is under further
study.

Above 8 K,µeff(T) for 3 can be fit by eq 3 (Figure 3). The data
can be fit withD ) 69.4 cm-1, θ ) 0.7 K, gRu2 ) 2.075,gFe ) 2,
and TIPRu2 ) 400× 10-6 emu/mol (chi-squared) 2.448× 10-3).
The divergence at 8 K suggests a transition from short-range
ferromagnetic interaction to long-range magnetic ordering. Upon
decreasingT for 3, µeff(T) increases sharply at∼10 K, reaching
19.2µB at 2 K (Figure 3).ø′(T) andø′′(T) increase with decreasing
temperature, but peaks are not present above 2 K. These data
suggest that the onset of magnetic ordering occurs below 2 K.

These initial studies show that1 can be used as a building block
for the formation of molecule-based magnets.
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Figure 2. µeff(T) and the fit to the higher temperature data with eqs 2 and
3 for 2 (top) and3 and4 (bottom).

Figure 3. (a) Alternating currentø′(T) andø′′(T) at 9.9, 99, and 999 Hz.
(b) M(H) showing a constricted hysteresis loop for2.
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